Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vet Microbiol ; 270: 109447, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1805301

ABSTRACT

Enteric disease is the predominant cause of morbidity and mortality in young mammals including pigs. Viral species involved in porcine enteric disease complex (PEDC) include rotaviruses, coronaviruses, picornaviruses, astroviruses and pestiviruses among others. The virome of three groups of swine samples submitted to the Kansas State University Veterinary Diagnostic Laboratory for routine testing were assessed, namely, a Rotavirus A positive (RVA) group, a Rotavirus co-infection (RV) group and a Rotavirus Negative (RV Neg) group. All groups were designated by qRT-PCR test results for Porcine Rotavirus A, B, C and H such that samples positive for RVA only went in the RVA group, samples positive for > 1 rotavirus went in the RV group and samples negative for all were grouped in the RVNeg group. All of the animals had clinical enteric disease resulting in scours and swollen joints/lameness, enlarged heart and/or a cough. All samples were metagenomic sequenced and analyzed for viral species composition that identified 14 viral species and eight bacterial viruses/phages. Sapovirus and Escherichia coli phages were found at a high prevalence in RVA and RV samples but were found at low or no prevalence in the RVNeg samples. Picobirnavirus was identified at a high proportion and prevalence in RVNeg and RV samples but at a low prevalence in the RVA group. Non-rotaviral diversity was highest in RVA samples followed by RV then RV Neg samples. A sequence analysis of the possible host of Picobirnaviruses revealed fungi as the most likely host. Various sequences were extracted from the sample reads and a phylogenetic update was provided showing a high prevalence of G9 and P[23] RVA genotypes. These data are important for pathogen surveillance and control measures.


Subject(s)
Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Diarrhea/epidemiology , Diarrhea/veterinary , Feces , Genotype , Humans , Mammals , Phylogeny , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Swine , Swine Diseases/epidemiology , Virome
2.
Emerg Microbes Infect ; 11(1): 95-112, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541489

ABSTRACT

ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/transmission , Animal Diseases/virology , COVID-19/veterinary , Deer , Pregnancy Complications, Infectious , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Female , High-Throughput Nucleotide Sequencing , Organ Specificity , Pregnancy , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Virus Shedding
3.
J Vet Diagn Invest ; 33(3): 457-468, 2021 May.
Article in English | MEDLINE | ID: covidwho-1264088

ABSTRACT

Every day, thousands of samples from diverse populations of animals are submitted to veterinary diagnostic laboratories (VDLs) for testing. Each VDL has its own laboratory information management system (LIMS), with processes and procedures to capture submission information, perform laboratory tests, define the boundaries of test results (i.e., positive or negative), and report results, in addition to internal business and accounting applications. Enormous quantities of data are accumulated and stored within VDL LIMSs. There is a need for platforms that allow VDLs to exchange and share portions of laboratory data using standardized, reliable, and sustainable information technology processes. Here we report concepts and applications for standardization and aggregation of data from swine submissions to multiple VDLs to detect and monitor porcine enteric coronaviruses by RT-PCR. Oral fluids, feces, and fecal swabs were the specimens submitted most frequently for enteric coronavirus testing. Statistical algorithms were used successfully to scan and monitor the overall and state-specific percentage of positive submissions. Major findings revealed a consistently recurrent seasonal pattern, with the highest percentage of positive submissions detected during December-February for porcine epidemic diarrhea virus, porcine deltacoronavirus, and transmissible gastroenteritis virus (TGEV). After 2014, very few submissions tested positive for TGEV. Monitoring VDL data proactively has the potential to signal and alert stakeholders early of significant changes from expected detection. We demonstrate the importance of, and applications for, data organized and aggregated by using LOINC and SNOMED CTs, as well as the use of customized messaging to allow inter-VDL exchange of information.


Subject(s)
Coronaviridae Infections/veterinary , Coronaviridae/isolation & purification , Laboratories/standards , Swine Diseases/virology , Animals , COVID-19 Testing/veterinary , Coronaviridae Infections/diagnosis , Coronaviridae Infections/virology , Disease Outbreaks , Feces/virology , Reference Standards , Seasons , Swine , Swine Diseases/diagnosis
4.
Emerg Microbes Infect ; 10(1): 638-650, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1127285

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19 and responsible for the current global pandemic. We and others have previously demonstrated that cats are susceptible to SARS-CoV-2 infection and can efficiently transmit the virus to naïve cats. Here, we address whether cats previously exposed to SARS-CoV-2 can be re-infected with SARS-CoV-2. In two independent studies, SARS-CoV-2-infected cats were re-challenged with SARS-CoV-2 at 21 days post primary challenge (DPC) and necropsies performed at 4, 7 and 14 days post-secondary challenge (DP2C). Sentinels were co-mingled with the re-challenged cats at 1 DP2C. Clinical signs were recorded, and nasal, oropharyngeal, and rectal swabs, blood, and serum were collected and tissues examined for histologic lesions. Viral RNA was transiently shed via the nasal, oropharyngeal and rectal cavities of the re-challenged cats. Viral RNA was detected in various tissues of re-challenged cats euthanized at 4 DP2C, mainly in the upper respiratory tract and lymphoid tissues, but less frequently and at lower levels in the lower respiratory tract when compared to primary SARS-CoV-2 challenged cats at 4 DPC. Viral RNA and antigen detected in the respiratory tract of the primary SARS-CoV-2 infected cats at early DPCs were absent in the re-challenged cats. Naïve sentinels co-housed with the re-challenged cats did not shed virus or seroconvert. Together, our results indicate that cats previously infected with SARS-CoV-2 can be experimentally re-infected with SARS-CoV-2; however, the levels of virus shed was insufficient for transmission to co-housed naïve sentinels. We conclude that SARS-CoV-2 infection in cats induces immune responses that provide partial, non-sterilizing immune protection against re-infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/transmission , Disease Susceptibility/immunology , Reinfection/veterinary , Virus Shedding , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/veterinary , Cats , Cell Line , Chlorocebus aethiops , RNA, Viral/isolation & purification , Reinfection/immunology , Reinfection/virology , SARS-CoV-2/immunology , Vero Cells , Viral Load
5.
Emerg Microbes Infect ; 9(1): 2322-2332, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-838603

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19) and responsible for the current pandemic. Recent SARS-CoV-2 susceptibility studies in cats show that the virus can replicate in these companion animals and transmit to other cats. Here, we present an in-depth study of SARS-CoV-2 infection, disease and transmission in domestic cats. Cats were challenged with SARS-CoV-2 via intranasal and oral routes. One day post challenge (DPC), two sentinel cats were introduced. Animals were monitored for clinical signs, clinicopathological abnormalities and viral shedding. Postmortem examinations were performed at 4, 7 and 21 DPC. Viral RNA was not detected in blood but transiently in nasal, oropharyngeal and rectal swabs and bronchoalveolar lavage fluid as well as various tissues. Tracheobronchoadenitis of submucosal glands with the presence of viral RNA and antigen was observed in airways of the infected cats. Serology showed that both, principals and sentinels, developed antibodies to SARS-CoV-2. All animals were clinically asymptomatic during the course of the study and capable of transmitting SARS-CoV-2 to sentinels. The results of this study are critical for understanding the clinical course of SARS-CoV-2 in a naturally susceptible host species, and for risk assessment.


Subject(s)
Betacoronavirus/isolation & purification , Cat Diseases/transmission , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Disease Susceptibility , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bronchoalveolar Lavage Fluid/chemistry , COVID-19 , Cat Diseases/pathology , Cat Diseases/virology , Cats , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Male , Pneumonia, Viral/pathology , RNA, Viral/analysis , RNA, Viral/isolation & purification , SARS-CoV-2 , Vero Cells , Virus Replication
6.
Emerg Microbes Infect ; 9(1): 2278-2288, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-811383

ABSTRACT

The emergence of SARS-CoV-2 has resulted in an ongoing global pandemic with significant morbidity, mortality, and economic consequences. The susceptibility of different animal species to SARS-CoV-2 is of concern due to the potential for interspecies transmission, and the requirement for pre-clinical animal models to develop effective countermeasures. In the current study, we determined the ability of SARS-CoV-2 to (i) replicate in porcine cell lines, (ii) establish infection in domestic pigs via experimental oral/intranasal/intratracheal inoculation, and (iii) transmit to co-housed naïve sentinel pigs. SARS-CoV-2 was able to replicate in two different porcine cell lines with cytopathic effects. Interestingly, none of the SARS-CoV-2-inoculated pigs showed evidence of clinical signs, viral replication or SARS-CoV-2-specific antibody responses. Moreover, none of the sentinel pigs displayed markers of SARS-CoV-2 infection. These data indicate that although different porcine cell lines are permissive to SARS-CoV-2, five-week old pigs are not susceptible to infection via oral/intranasal/intratracheal challenge. Pigs are therefore unlikely to be significant carriers of SARS-CoV-2 and are not a suitable pre-clinical animal model to study SARS-CoV-2 pathogenesis or efficacy of respective vaccines or therapeutics.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/veterinary , Pandemics/veterinary , Pneumonia, Viral/veterinary , Swine Diseases/virology , Animals , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Disease Models, Animal , Disease Reservoirs , Disease Susceptibility , Female , Male , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction/veterinary , SARS-CoV-2 , Swine , Swine Diseases/immunology , Swine Diseases/pathology , Swine Diseases/transmission , Virus Cultivation , Virus Replication , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL